
PUSHER SYNDROME ASSIST DEVICE

David Glaubke PARTNERS: Jake Hoyne, Pat Naureckas CLIENT: Audra Sturmoski, *PT, MSPT, NCS*

BACKGROUND

- Pusher Syndrome
 - 10% of hemiparetic patients
 - Characteristic leaning posture
 - Distorted sense of gravity
 - Risk of fall or injury
 - Physical therapy

NEED

- Device-based solution to detect and notify of leaning posture
 - Feedback to patient without PT monitoring
 - Extend amount of posture feedback
 - Improve default posture in shorter time
- Physical therapy setting
 - Future use at home

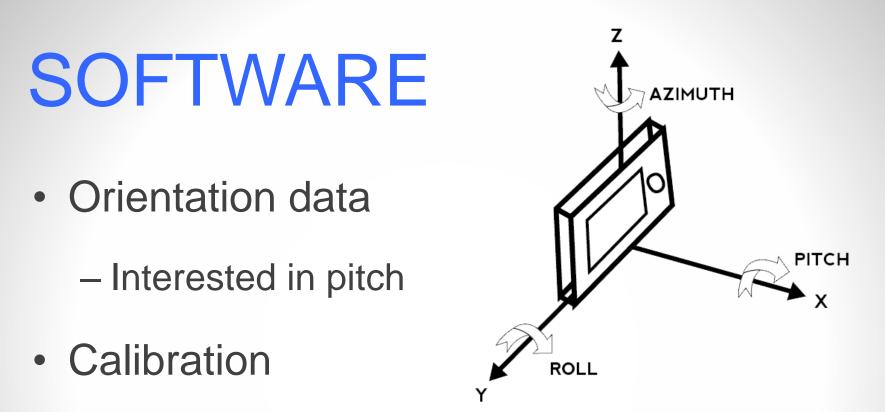
SOLUTION

- Developed an Android software application
 - Cost-effective and accessible method of distributing software in volume
 - Devices include necessary sensors
- Designed accompanying phone caddy and harness
 - Hold the phone securely to the patient

REQUIREMENTS

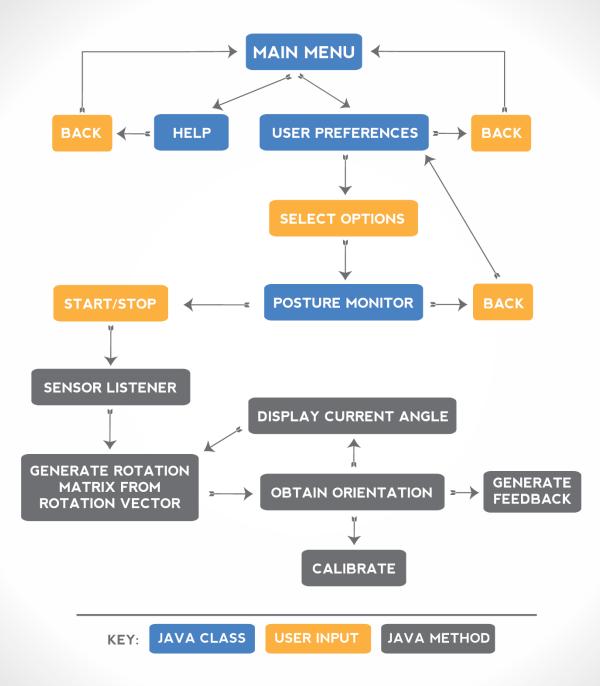
- Software
 - Obtain positional data
 - Accurate to 0.5 degrees
 - Alerts user in real-time when leaning past threshold
 - 6.66 Hz sampling rate
 - Intuitive GUI
 - Use by minimally trained therapists and elderly patients
 - Ability to modulate threshold value feedback type

REQUIREMENTS

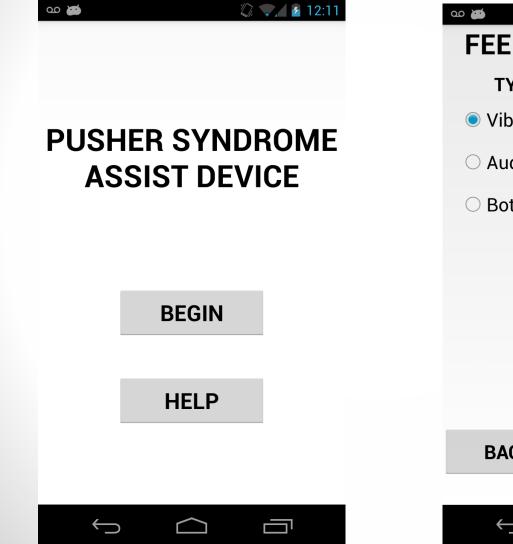

- Phone caddy
 - Fit any Android smartphone
 - Hold phone stably and securely
 - Useable with minimal dexterity
- Harness
 - Safe and comfortable
 - Adjustable to fit all patients
 - Hold phone caddy stably and securely
 - Useable with minimal dexterity

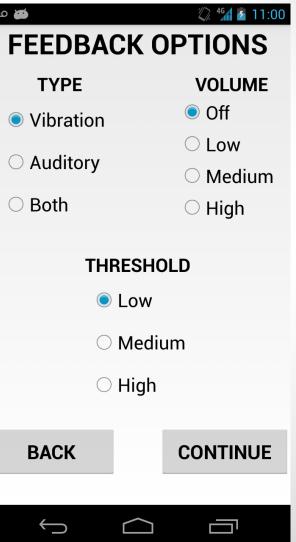
- Device requirements
 - Android 2.3 (Gingerbread) or later
 - December 2010, 98.3% of devices
 - 4 MB of free storage space
 - 10 MB available RAM
 - Accelerometer and magnetometer
 - Present on Android 2.3+ devices
 - CPU requirement
 - Met by all Android 2.3+ devices
 - 1.2 GHz processor shows 4% usage

- Specifications
 - Precise to 1.0 x 10⁻⁶ degrees
 - ±90° range in coronal plane
 - Sensor sampling rate of 16.67 Hz
 - Time lag negligible while app is in use
 - Intentional 1.5 second delay for threshold response

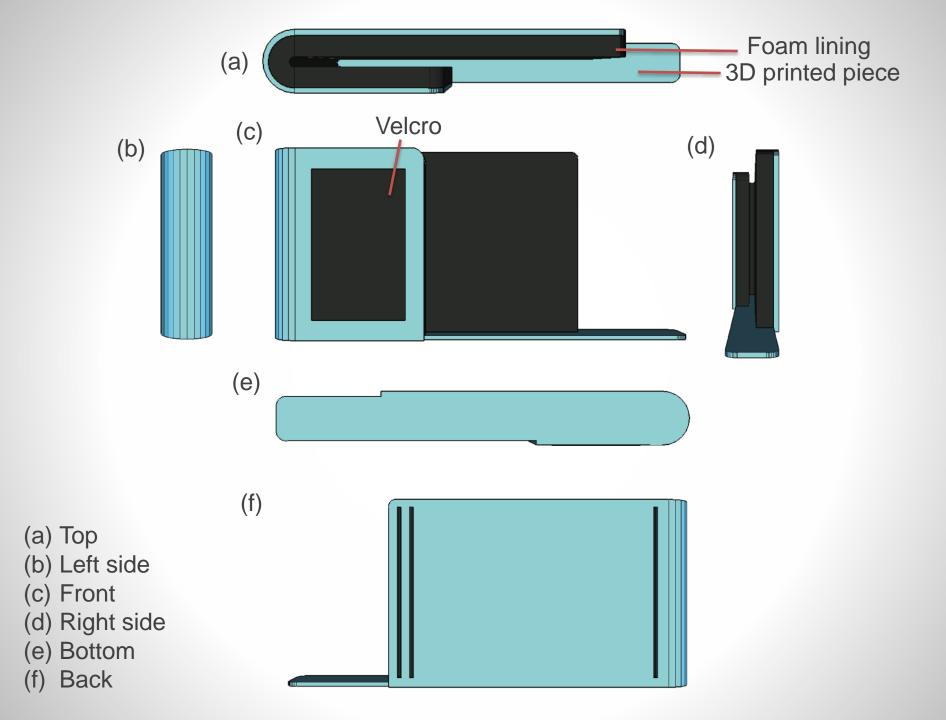

Development costs

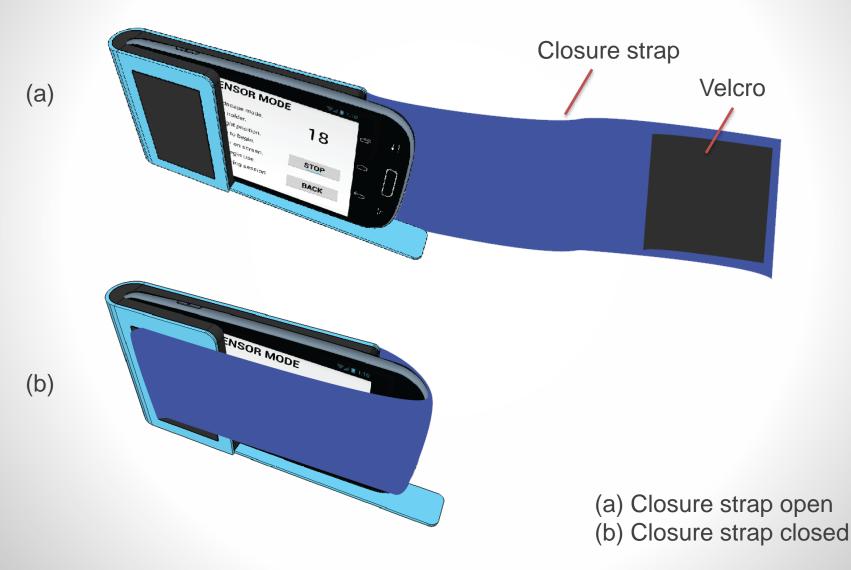
ITEM	HOURS	COST (@ \$150/HR)		
User interface planning	5	\$750		
User interface development	10	\$1500		
Sensor, feedback development	15	\$2250		
Debugging	5	\$750		
FUTURE GOALS				
Local non-PHI data storage	5	\$750		
HIPAA-secure database for patient and physician access	50	\$7500		
Complete user preferences	5	\$750		
Fall sensor	7	\$1050		
TOTAL	104	\$15,200		



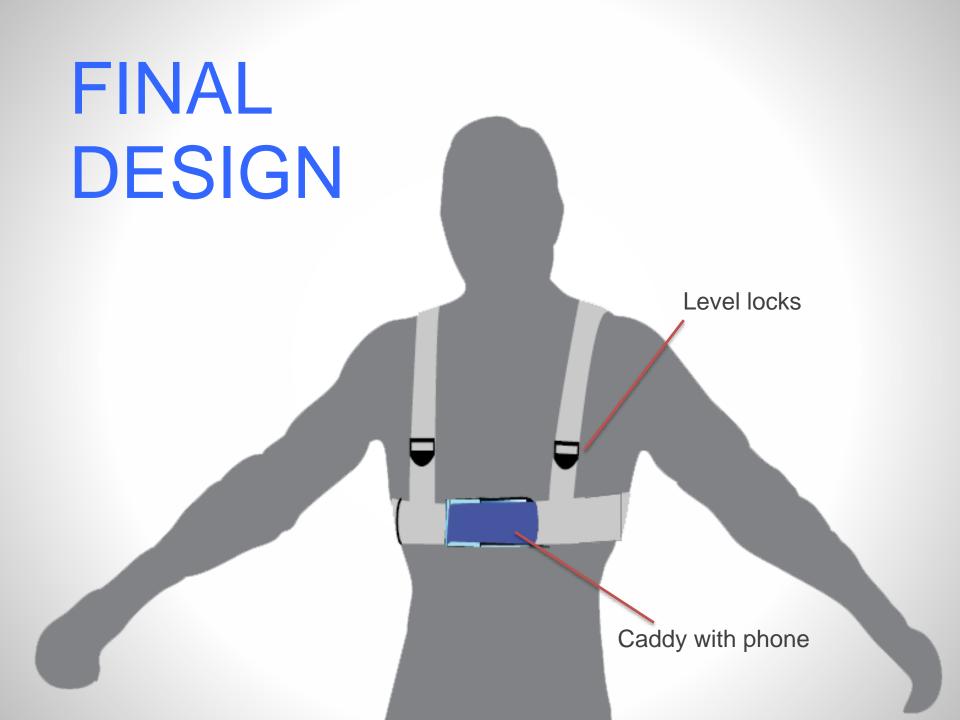

- Prevents need for perfect orientation of device with respect to patient
- Uses first data point after "Start" is pressed as a reference point for all future position data

- Rotation vector algorithm
 - Code from SDK of Android 2.3 and later
 - Obtains rotation vector from accelerometer and magnetometer data
 - Transforms the phone's position, described by this vector, to the earth's reference frame, creating a rotation matrix
 - Matrix describes interplay between position of the phone and the reference frame of the earth
 - Orientation is obtained from this rotation matrix


GUI



• Phone caddy



Analysis of all Android phones made to date

DIMENSION	LOWEST	HIGHEST	RANGE
Length	4.10 in	5.45 in	1.35 in
Width	2.30 in	2.79 in	0.49 in
Thickness	0.28 in	0.63 in	0.35 in

- Caddy designed to accommodate all of them
 - Foam lining compresses to accommodate thickness
 - Velcro closure strap stretches to accommodate length
 - Width is open to the air, no restriction
 - Walls are high enough to protect the screen

- Harness
 - Shoulder straps are adjustable
 - Size of patient or any physical irregularities
 - Belt portion closes by Velcro
 - Constructed from polyester-Spandex blend
 - Slight stretch, comfortable, cleanable

HARDWARE (PROTOTYPE)

ITEM	COMPANY	COMPONENT PRICE (\$)		SHIPPING (\$)	
2 1/2 inch fabric	CTS	ELASTIC-04K212W	3.00	2.50	
1 1/2 inch fabric	АНН	W20I-RBPO-ELAS-1500-BK	RBPO-ELAS-1500-BK 6.46		
Ladder Locks	АНН	LLP150	2.58	"	
Velcro Hook	АНН	VRN200	1.50	"	
Velcro Loop	АНН	VRN200	3.00	"	
2 1/2 inch loop	Berkeley Point	S0139-Rxxx	4.48	6.95	
3D Printing	Shapeways	N/A	35.94	6.50	
Foam insert	Foam Factory	Polyethylene Foam Roll	3.59	12.99	
TOOLS					
Fabric Cutter	АНН	TWC001	130.00	20.00	
Sewing Awl	АНН	STH001	18.00	"	
77 Adhesive	3M	62487649303	13.60	6.95	
TOTAL			222.15	66.79	
TOTAL + SHIPPING				288.94	

HARDWARE (PRODUCTION)

ITEM	COMPANY	COMPONENT	QUANTITY	UNIT PRICE (\$)	EXTENDED PRICE (\$)	SHIPPING (\$)	UNIT SHIPPING (\$)
2 1/2 inch fabric	CTS	ELASTIC- 04K212W	4266 Yards	0.52	522.00	82.23	0.08223
1 1/2 inch fabric	АНН	W20I-RBPO- ELAS-1500-BK	1750 Yards	1.98	1978.37	375.00	0.375
Ladder Locks	AHH	LLP150	2000	0.65	645.00	75.00	0.075
Velcro Hook	АНН	VRN200	150 yards	0.25	251.13	20.00	0.02
Velcro Loop	АНН	VRN200	700 yards	1.16	1163.39	175.00	0.175
2 1/2 inch loop	Berkeley Point	S0139-Rxxx	1000	3.81	3810.00	0.00	0.00
3D Printing	Shapeways	N/A	1000	35.94	35940.00	6.50	0.01
Foam insert	Foam Factory	Polyethylene Foam Roll	1 60" x50' Roll	0.17	169.99	0.00	0.00
Assembly				8.00	8000.00	N/A	N/A
TOTAL				52.48	52,479.88	733.73	0.73
TOTAL + Shipping						53,213.61	53.21

CONCLUSION

- When assembled, prototype would be fully functional and useable in a PT setting
 - Solved the required problems necessary for a successful Pusher Syndrome Assist Device
- Future directions add useful functionalities
 - Storage and analysis of data
 - Fall sensor
- Intellectual property

CONCLUSION

- What did we learn?
 - There is nothing simple about design
 - Improved skills
 - Jake, Java/app development
 - David, CAD
 - Pat, conceptualized design and logistics
- What would we do differently?
 - More exhaustive initial brainstorming
 - Better time management

DEMONSTRATION

QUESTIONS?