
# Pusher Syndrome Assist Device: Progress Report

Client: Audra Sturmoski, PT, MSPT, NCS

Group #13 Jake Hoyne Pat Naureckas David Glaubke

# Background

- Stroke related condition
  - o Patients "push" to their weak side
  - Internal sense of balance is distorted
- Falling risk



# Project Scope and Need

- Wearable device
  - Feedback in the absence of a physical therapist
  - Device will respond based off threshold
- Extend the amount of time spent learning correct orientation
- Physical Therapy Setting
  - Home Setting

# Specifications

| Device Specifications       |                                                                                                                              |  |  |  |  |
|-----------------------------|------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Cost                        | < \$150 for the patient or <\$1000 for the rehabilitation facility                                                           |  |  |  |  |
| Weight                      | <2.3kg                                                                                                                       |  |  |  |  |
| Sampling Rate               | >6.66Hz                                                                                                                      |  |  |  |  |
| Operable Displacement Range | ±45 degrees in the coronal plane                                                                                             |  |  |  |  |
| Precision                   | >0.5 degrees                                                                                                                 |  |  |  |  |
| Ease of Use                 | Physical therapist and/or patient can operate with minimal technical training                                                |  |  |  |  |
| Wearable                    | Must not interfere with sitting, standing, and walking comfortably Must be able to operate for at least 60 minutes at a time |  |  |  |  |

# Design Categories

1. Sensor Design

2. Attachment Design

3. Feedback Design

- Pressure Sensor
- Tilt Switch
  - Gradient Tilt Switch
- Electrolytic Capacitive Tilt Sensor
- Microsoft Kinect for Windows
- Accelerometer/Gyroscope
  - Smartphone

- Pressure Sensor
- Tilt Switch
  - Gradient Tilt Switch
- Electrolytic Capacitive Tilt Sensor
- Microsoft Kinect for Windows
- Accelerometer/Gyroscope
  - Smartphone

#### Pressure Sensor

- Pros:
  - Inexpensive
- Cons:
  - Cannot be used while walking
  - Wired
  - Tedious setup



#### **Gradient Tilt Switch**

#### • Pros:

- Gradient feedback
- Robust measurement

#### • Cons:

- Complex circuit
- o Difficult user-interface



#### **Electrolytic Capacitive Tilt Sensor**

#### • Pros:

- Precision
- Robust measurement

#### • Cons:

- Sampling rate
- AC power supply
- Small displacement range

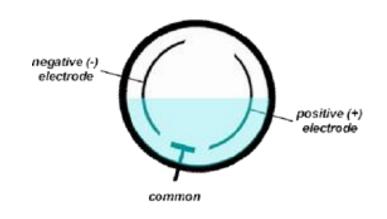


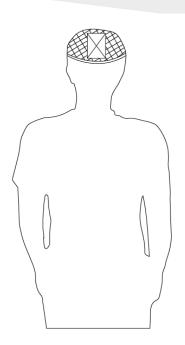

figure 2 - sensor at +15 degrees, positive electrode submerged further than negative electrode into fluid

#### **Microsoft Kinect for Windows**

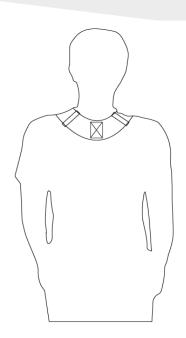
- Pros:
  - Mobility
  - User Interface
- Cons:
  - Cost
  - Availability of computers
  - Sensor Range



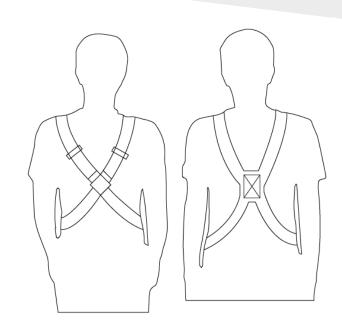
#### **Smartphone**


- Pros:
  - Future development
  - Familiar user-interface
  - Updates
- Cons:
  - Cost




|                    | Weight | Pressure Sensor | Tilt Sensor | Gradient Tilt | Electrolytic | Kinect | Accel/Gyro | Smartphone |
|--------------------|--------|-----------------|-------------|---------------|--------------|--------|------------|------------|
| Cost               | 7      | 8               | 8           | 7             | 8            | 3      | 7          | 5          |
| Weight             | 8      | 7               | 9           | 7             | 6            | 10     | 6          | 7          |
| Precision          | 7      | 4               | 6           | 7             | 10           | 8      | 8          | 8          |
| Displacement Range | 5      | 5               | 6           | 7             | 4            | 10     | 10         | 10         |
| Robustness         | 6      | 5               | 2           | 6             | 6            | 9      | 8          | 9          |
| Sampling Rate      | 4      | 7               | 10          | 7             | 2            | 8      | 7          | 7          |
| Ease of Use        | 7      | 3               | 7           | 6             | 5            | 7      | 6          | 9          |
| Safety             | 10     | 7               | 8           | 8             | 7            | 10     | 8          | 9          |
| Mobility           | 9      | 4               | 7           | 7             | 2            | 7      | 7          | 7          |
| Calibration        | 9      | 6               | 6           | 7             | 7            | 8      | 7          | 9          |
| Durability         | 6      | 7               | 7           | 6             | 6            | 9      | 7          | 8          |
| Growth Potential   | 5      | 2               | 1           | 4             | 4            | 7      | 6          | 10         |
| Total              |        | 456             | 545         | 557           | 480          | 666    | 599        | 674        |

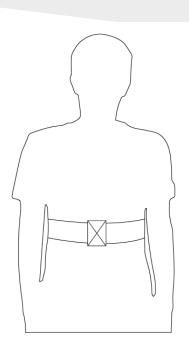
|                    | Weight | Pressure Sensor | Tilt Sensor | Gradient Tilt | Electrolytic | Kinect | Accel/Gyro | Smartphone |
|--------------------|--------|-----------------|-------------|---------------|--------------|--------|------------|------------|
| Cost               | 7      | 8               | 8           | 7             | 8            | 3      | 7          | 5          |
| Weight             | 8      | 7               | 9           | 7             | 6            | 10     | 6          | 7          |
| Precision          | 7      | 4               | 6           | 7             | 10           | 8      | 8          | 8          |
| Displacement Range | 5      | 5               | 6           | 7             | 4            | 10     | 10         | 10         |
| Robustness         | 6      | 5               | 2           | 6             | 6            | 9      | 8          | 9          |
| Sampling Rate      | 4      | 7               | 10          | 7             | 2            | 8      | 7          | 7          |
| Ease of Use        | 7      | 3               | 7           | 6             | 5            | 7      | 6          | 9          |
| Safety             | 10     | 7               | 8           | 8             | 7            | 10     | 8          | 9          |
| Mobility           | 9      | 4               | 7           | 7             | 2            | 7      | 7          | 7          |
| Calibration        | 9      | 6               | 6           | 7             | 7            | 8      | 7          | 9          |
| Durability         | 6      | 7               | 7           | 6             | 6            | 9      | 7          | 8          |
| Growth Potential   | 5      | 2               | 1           | 4             | 4            | 7      | 6          | 10         |
| Total              |        | 456             | 545         | 557           | 480          | 666    | 599        | 674        |


- Hat
- Necklace
- Harness
- Vest
- Belt
- Belt with shoulder straps

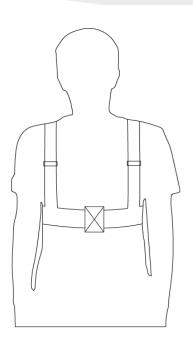



- Hat
- Necklace
- Harness
- Vest
- Belt
- Belt with shoulder straps




- Hat
- Necklace
- Harness
- Vest
- Belt
- Belt with shoulder straps




- Hat
- Necklace
- Harness
- Vest
- Belt
- Belt with shoulder straps



- Hat
- Necklace
- Harness
- Vest
- Belt
- Belt with shoulder straps



- Hat
- Necklace
- Harness
- Vest
- Belt
- Belt with shoulder straps



# Pugh Chart - Attachment

|               | Weight | Hat | Necklace | Harness | Vest | Belt | Belt with shoulder straps |
|---------------|--------|-----|----------|---------|------|------|---------------------------|
| Aesthetics    | 5      | 1   | 5        | 9       | 5    | 9    | 9                         |
| Weight        | 8      | 8   | 8        | 7       | 6    | 7    | 7                         |
| Cost          | 7      | 7   | 7        | 7       | 5    | 7    | 7                         |
| Comfort       | 7      | 4   | 5        | 7       | 6    | 7    | 8                         |
| Adjustability | 8      | 7   | 8        | 9       | 3    | 9    | 9                         |
| Safety        | 10     | 9   | 8        | 9       | 9    | 8    | 8                         |
| Mobility      | 9      | 10  | 9        | 8       | 5    | 9    | 8                         |
| Stability     | 9      | 1   | 3        | 9       | 8    | 7    | 9                         |
| Durability    | 6      | 8   | 9        | 9       | 9    | 9    | 9                         |
| Total         |        | 439 | 479      | 568     | 435  | 549  | 565                       |

# Pugh Chart - Attachment

|               | Weight | Hat | Necklace | Harness | Vest | Belt | Belt with shoulder straps |
|---------------|--------|-----|----------|---------|------|------|---------------------------|
| Aesthetics    | 5      | 1   | 5        | 9       | 5    | 9    | 9                         |
| Weight        | 8      | 8   | 8        | 7       | 6    | 7    | 7                         |
| Cost          | 7      | 7   | 7        | 7       | 5    | 7    | 7                         |
| Comfort       | 7      | 4   | 5        | 7       | 6    | 7    | 8                         |
| Adjustability | 8      | 7   | 8        | 9       | 3    | 9    | 9                         |
| Safety        | 10     | 9   | 8        | 9       | 9    | 8    | 8                         |
| Mobility      | 9      | 10  | 9        | 8       | 5    | 9    | 8                         |
| Stability     | 9      | 1   | 3        | 9       | 8    | 7    | 9                         |
| Durability    | 6      | 8   | 9        | 9       | 9    | 9    | 9                         |
| Total         |        | 439 | 479      | 568     | 435  | 549  | 565                       |

# Design Alternatives - Feedback

#### Auditory

- Fast reaction time
- Background noise

#### Vibration

- More accurate response
- o Slower reaction time
- o Uncomfortable

# Design Alternatives - Feedback

- Multimodal System
  - Prevents system overload
  - Decrease chance of missing feedback
- Auditory and Vibration
  - Controled by user-interface
  - Allow for user's preferences

# Smartphone Choice

- Android
- Windows Phone
- Blackberry
- iPhone
- iPod Touch

## Smartphone Choice

- Android (Droid Mini)
- Windows Phone (Lumia 620)
- Blackberry
- iPhone (iPhone 5)
- iPod Touch



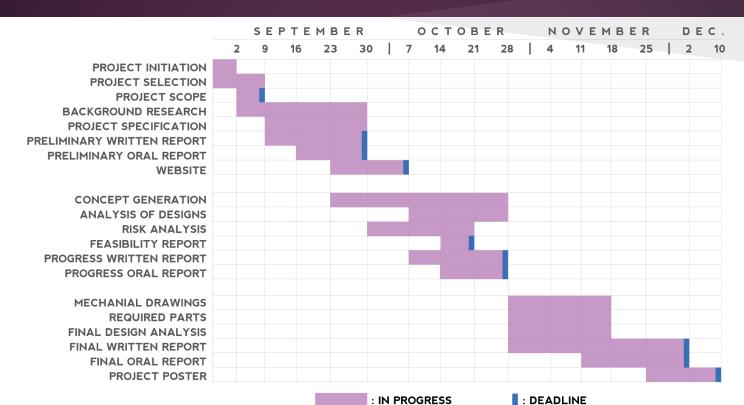




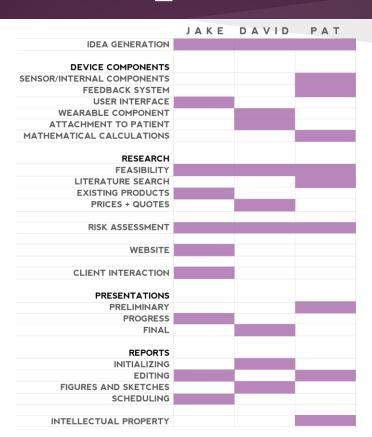


# Pugh Chart - Smartphone

|                  | Weight | iPhone | iPod Touch | Windows | Android |
|------------------|--------|--------|------------|---------|---------|
|                  |        |        |            |         |         |
| Cost             | 8      | 5      | 8          | 7       | 6       |
| Unification      | 6      | 8      | 8          | 6       | 6       |
| Development      | 7      | 6      | 6          | 6       | 8       |
| Weight           | 8      | 8      | 8          | 8       | 8       |
| Size             | 7      | 8      | 8          | 8       | 8       |
| Battery Life     | 6      | 8      | 8          | 5       | 8       |
| Market Share     | 3      | 7      | 8          | 3       | 8       |
| Feedback         | 7      | 8      | 6          | 8       | 8       |
| Future Potential | 5      | 8      | 5          | 8       | 8       |
| Total            |        | 415    | 413        | 389     | 428     |


# Pugh Chart - Smartphone

|                  | Weight | iPhone | iPod Touch | Windows | Android |
|------------------|--------|--------|------------|---------|---------|
| Cost             | 8      | 5      | 8          | 7       | 6       |
| Unification      | 6      | 8      | 8          | 6       | 6       |
| Development      | 7      | 6      | 6          | 6       | 8       |
| Weight           | 8      | 8      | 8          | 8       | 8       |
| Size             | 7      | 8      | 8          | 8       | 8       |
| Battery Life     | 6      | 8      | 8          | 5       | 8       |
| Market Share     | 3      | 7      | 8          | 3       | 8       |
| Feedback         | 7      | 8      | 6          | 8       | 8       |
| Future Potential | 5      | 8      | 5          | 8       | 8       |
| Total            |        | 415    | 413        | 389     | 428     |


# Final Chosen Design

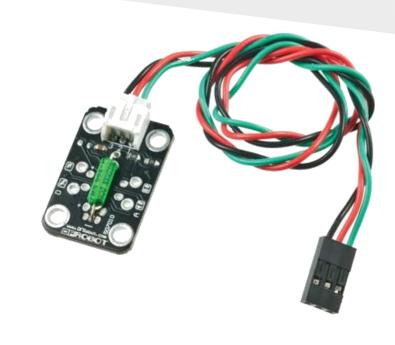
- Sensor:
  - o Android smartphone, such as the Droid Mini
- Attachment:
  - Harness
- Feedback:
  - Auditory and Vibrational

# Design Schedule



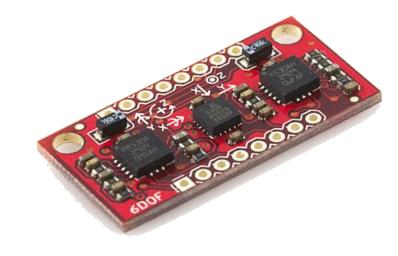
# Member Responsibilities




# Questions?

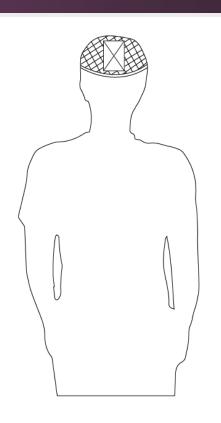
### References

### References


#### Tilt Switch

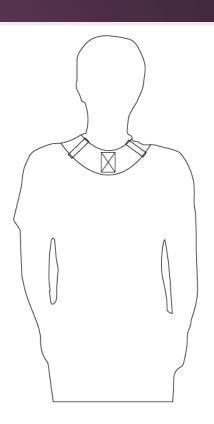
- Pros:
  - Inexpensive
  - Lightweight
- Cons:
  - Not robust
  - No potential for growth




#### Accelerometer/Gyroscope

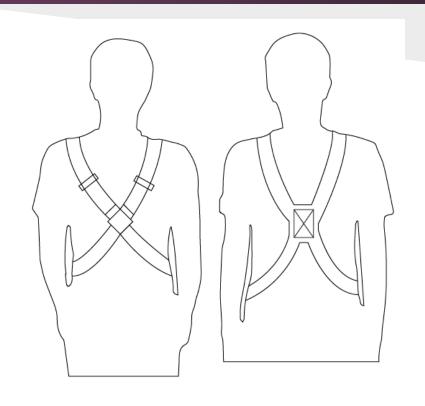
- Pros:
  - Robust
  - Displacement Range
- Cons:
  - Cost
  - Difficult user-interface
  - Ease of use




#### <u>Hat</u>

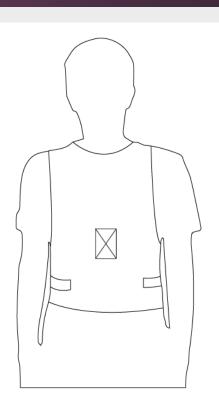
- Pros:
  - Mobility
  - Cost
- Cons:
  - Aesthetics
  - Lack of precision




#### **Necklace**

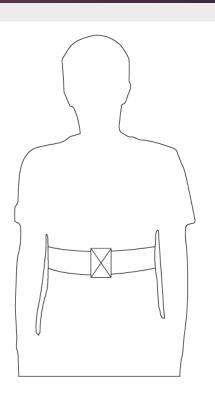
- Pros:
  - Arm motion
- Cons:
  - Could spin around neck
  - Not discreet




#### **Backpack**

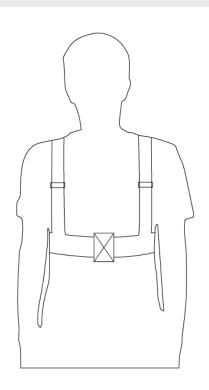
- Pros:
  - Stable
  - Adjustable
- Cons:
  - Complicated




#### <u>Vest</u>

- Pros:
  - Stability
- Cons:
  - Discreet
  - Size not adjustable
  - Lots of material




#### <u>Belt</u>

- Pros:
  - Discreet
  - Minimal material
- Cons:
  - Rotation around torso
  - Uncomfortable



#### Belt with Shoulder Straps

- Pros:
  - Increased stability
  - Better weight distribution
- Cons:
  - Possibly uncomfortable

